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CHAOS ENGINEERING ?

WHY DO WE NEED
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“IN A COMPLEX LANDSCAPE 
YOUR APPLICATION IS 
NEVER FULLY UP”
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TRADITIONAL MONITORING 

TOOLS ARE DEAD!
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MEASURE

USER IMPACT
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MEASURE

USER IMPACT RELIABILITY

AVAILABILITY LATENCY

THROUGHPUT

CORRECTNESS

FRESHNESS

COVERAGE

QUALITY

DURABILITY
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RESILIENT APPLICATIONS

INFRASTRUCTURE

NETWORK

APPLICATION

PEOPLE
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GRACEFUL DEGRADATION

FAIL OPEN
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GRACEFUL DEGRADATION

FAIL OPEN

BUT WE DO TESTS?

@GEERTVDC



BUT WE DO TESTS?

UNIT A

INPUT OUTPUT

UNIT TESTS
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BUT WE DO TESTS?

COMPONENT

/ SERVICE A

INPUT OUTPUT
COMPONENT

/SERVICE B

INTEGRATION TESTS
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CHAOS ENGINEERING ?

WHAT IS
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CHAOS ENGINEERING

IS NOT

RANDOMLY BREAKING

STUFF IN PRODUCTION
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CHAOS ENGINEERING 

“Chaos Engineering is the discipline of 

experimenting on a distributed system 

in order to build confidence in the 

system’s capability to withstand 

turbulent conditions in production.”
https//principlesofchaos.org
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SERVICE

INPUT OUTPUT

SERVICE
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CHAOS ENGINEERING EXPERIMENTS

HOST FAILURE

RESOURCE CAPACITY ATTACKS

APPLICATION FAILURE

NETWORK ATTACKS

BRENT ATTACK
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CHAOS ENGINEERING

ONLY IN PRODUCTION?
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YOUR FIRST EXPERIMENT

HOW TO START
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GAME DAY
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INCIDENT RESPONSE LEARNING

OUTAGENORMAL
DETECT & 

ANALYSIS
FIX

LEARNIMPROVE
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CHAOS GAME DAY

CHAOS 

EXPERIMENT
NORMAL

DETECT & 

ANALYSIS
FIX

LEARNIMPROVE
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CHAOS EXPERIMENT PHASES

STEADY 

STATE

DEFINE 

HYPOTHESIS

DESIGN & 

EXECUTE
LEARN FIX EMBED
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STEADY STATE

STEADY 

STATE

DEFINE 

HYPOTHESIS

DESIGN & 

EXECUTE
LEARN FIX EMBED
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STEADY STATE

MEASURE BUSINESS METRICS

100ms extra load time drop Amazon’s sale by 1%
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STEADY STATE

SERVICE 

UNDER TEST
ROUTING SERVICE B
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STEADY STATE

SERVICE 

UNDER TEST
ROUTING SERVICE B

CONTROL 

SERVICE

EXPERIMENT 

SERVICE
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STEADY STATE

SERVICE 

UNDER TEST
ROUTING SERVICE B

CONTROL 

SERVICE

EXPERIMENT 

SERVICE

98%

1%

1%

@GEERTVDC



ALWAYS BE ABLE TO ABORT
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DEFINE HYPOTHESIS

STEADY 

STATE

DEFINE 

HYPOTHESIS

DESIGN & 

EXECUTE
LEARN FIX EMBED
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DEFINE HYPOTHESIS

BRAINSTORM WHAT CAN GO WRONG

BRING EVERYONE

DEVELOPERS

SRE / OPERATIONS

NETWORKS

BUSINESS

INFRASTRUCTURE

TESTERS

WHAT CAN GO WRONG?

WHAT IF DATABASE IS DOWN?

WHAT IF SERVICE RESPONDS SLOWER?

WHAT IF MY CACHE RESPONDS SLOW?

WHAT IF A POD DIES?

WHAT IF LOADBALANCER STOPS?

WHAT IF ….?



STOP IF YOU KNOW THE 

EXPERIMENT WILL BREAK
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DESIGN & EXECUTE EXPERIMENT

STEADY 

STATE

DEFINE 

HYPOTHESIS

DESIGN & 

EXECUTE
LEARN FIX EMBED
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DESIGN & EXECUTE EXPERIMENT

START SMALL

NOTIFY PEOPLE INVOLVED

SLOWLY INCREASE BLAST RADIUS

TOOLS:
GREMLIN.COM

CHAOSTOOLKIT.ORG

GITHUB.COM/NETFLIX/SIMIANARMY

GITHUB.COM/ASOBTI/KUBE-MONKEY
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LEARN

STEADY 

STATE

DEFINE 

HYPOTHESIS

DESIGN & 

EXECUTE
LEARN FIX EMBED
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LEARN

HOW FAST DID WE RECOVER?

HOW FAST DID WE DETECT?

DO NOT BLAME!
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FIX

STEADY 

STATE

DEFINE 

HYPOTHESIS

DESIGN & 

EXECUTE
LEARN FIX EMBED
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FIX

IMPLEMENT FIX

RERUN EXPERIMENT
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EMBED

STEADY 

STATE

DEFINE 

HYPOTHESIS

DESIGN & 

EXECUTE
LEARN FIX EMBED
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EMBED

ONBOARDING

CONTINUOUS CHAOS

EMBED IN CULTURE
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PATTERNS

RESILIENT ARCHITECTURE
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PARALLEL EXECUTION

ASYNC COMMUNICATION

QUEUE BASED LOAD DISTRIBUTION

IDEMPOTENT APIS

BULKHEAD PATTERN

CIRCUIT BREAKERS

SPLIT RESPONSIBILITIES



MULTI PARALELLISM

PARALLELISM AVAILABILITY DOWNTIME PER YEAR

1 99% 3 DAYS 16 HOURS

2 99,99% 53 MINUTES

3 99,9999% 32 SECONDS

HOW PARALEL IS YOUR CLOUD COMPONENT ?

REGIONSAVAILABILITY ZONES
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ASYNC COMMUNICATION

SYNC REQUIRES A CONNECTION PER REQUEST

FOCUS ON MESSAGE BASED COMMUNICATION

DECOUPLING PUB SUB LISTENER
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QUEUE BASED LOAD DISTRIBUTION
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QUEUE BASED LOAD DISTRIBUTION

SERVICE BUS
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IDEMPOTENT APIS

HTTP METHOD IDEMPOTENCE SAFETY

GET YES YES

HEAD YES YES

PUT YES NO

DELETE YES NO

POST NO NO

PATCH NO NO
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BULKHEAD PATTERN

ISOLATE WORKLOADS LIKE THE HULL OF A SHIP
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CIRCUIT BREAKER

@GEERTVDC



CIRCUIT BREAKER

ADD JITTER TO RETRIES



SPLIT RESPONSIBILITIES

READ / WRITE SHARDING

CQRS
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WRAP UP

BIG CULTURE CHANGE

FULL CYCLE DEVELOPERSPRODUCTION ACCESS

START EXPERIMENTING

START SMALL CHECK OUT TOOLSOBSERVABILITY
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“CHAOS ENGINEERING DOESN’T CAUSE 
PROBLEMS, IT JUST REVEALS THEM” 

NORA JONES – CHAOS ENGINEERING LEAD SLACK



GEERT VAN DER CRUIJSEN
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THANK YOU!
ALL PICTURES USED ARE FROM UNSPLASHED.COM

RESOURCES

BOOKS:

Chaos engineering -O’Reilly

Chaos engineering observability -O’Reilly

TOOLS:

chaostoolkit.org

gremlin.com

github.com/netflix/simianarmy

github.com/asobti/kube-monkey

RESOURCES:
principlesofchaos.org

github.com/dastergon/awesome-chaos-engineering

docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency


