
CHAOS ENGINEERING
THE FINE ART OF BREAKING STUFF IN 

PRODUCTION ON PURPOSE

GEERT VAN DER CRUIJSEN

@GEERTVDC



GEERT VAN DER CRUIJSEN

@GEERTVDC

CLOUD NATIVE ARCHITECT

#DOEPICSHIT

FULL CYCLE DEVELOPER

DEVOPS COACH



CHAOS ENGINEERING ?

WHY DO WE NEED

@GEERTVDC





@GEERTVDC



@GEERTVDC



“IN A COMPLEX LANDSCAPE 
YOUR APPLICATION IS 
NEVER FULLY UP”

@GEERTVDC



TRADITIONAL MONITORING 

TOOLS ARE DEAD!

@GEERTVDC



MEASURE

USER IMPACT

@GEERTVDC



MEASURE

USER IMPACT RELIABILITY

AVAILABILITY LATENCY

THROUGHPUT

CORRECTNESS

FRESHNESS

COVERAGE

QUALITY

DURABILITY

@GEERTVDC



RESILIENT APPLICATIONS

INFRASTRUCTURE

NETWORK

APPLICATION

PEOPLE

@GEERTVDC



GRACEFUL DEGRADATION

FAIL OPEN

@GEERTVDC



GRACEFUL DEGRADATION

FAIL OPEN

BUT WE DO TESTS?

@GEERTVDC



BUT WE DO TESTS?

UNIT A

INPUT OUTPUT

UNIT TESTS

@GEERTVDC



BUT WE DO TESTS?

COMPONENT

/ SERVICE A

INPUT OUTPUT
COMPONENT

/SERVICE B

INTEGRATION TESTS

@GEERTVDC



CHAOS ENGINEERING ?

WHAT IS

@GEERTVDC



CHAOS ENGINEERING

IS NOT

RANDOMLY BREAKING

STUFF IN PRODUCTION
@GEERTVDC



CHAOS ENGINEERING 

“Chaos Engineering is the discipline of 

experimenting on a distributed system 

in order to build confidence in the 

system’s capability to withstand 

turbulent conditions in production.”
https//principlesofchaos.org

@GEERTVDC



CHAOS ENGINEERING 

“Chaos Engineering is the discipline of 

experimenting on a distributed system 

in order to build confidence in the 

system’s capability to withstand

turbulent conditions in production.”
https//principlesofchaos.org

@GEERTVDC



SERVICE

INPUT OUTPUT

SERVICE

@GEERTVDC



CHAOS ENGINEERING EXPERIMENTS

HOST FAILURE

RESOURCE CAPACITY ATTACKS

APPLICATION FAILURE

NETWORK ATTACKS

BRENT ATTACK

@GEERTVDC



CHAOS ENGINEERING

ONLY IN PRODUCTION?

@GEERTVDC



YOUR FIRST EXPERIMENT

HOW TO START

@GEERTVDC



GAME DAY

@GEERTVDC



INCIDENT RESPONSE LEARNING

OUTAGENORMAL
DETECT & 

ANALYSIS
FIX

LEARNIMPROVE

@GEERTVDC



CHAOS GAME DAY

CHAOS 

EXPERIMENT
NORMAL

DETECT & 

ANALYSIS
FIX

LEARNIMPROVE

@GEERTVDC



CHAOS EXPERIMENT PHASES

STEADY 

STATE

DEFINE 

HYPOTHESIS

DESIGN & 

EXECUTE
LEARN FIX EMBED

@GEERTVDC



STEADY STATE

STEADY 

STATE

DEFINE 

HYPOTHESIS

DESIGN & 

EXECUTE
LEARN FIX EMBED

@GEERTVDC



STEADY STATE

MEASURE BUSINESS METRICS

100ms extra load time drop Amazon’s sale by 1%

@GEERTVDC



STEADY STATE

SERVICE 

UNDER TEST
ROUTING SERVICE B

@GEERTVDC



STEADY STATE

SERVICE 

UNDER TEST
ROUTING SERVICE B

CONTROL 

SERVICE

EXPERIMENT 

SERVICE

@GEERTVDC



STEADY STATE

SERVICE 

UNDER TEST
ROUTING SERVICE B

CONTROL 

SERVICE

EXPERIMENT 

SERVICE

98%

1%

1%

@GEERTVDC



ALWAYS BE ABLE TO ABORT

@GEERTVDC



DEFINE HYPOTHESIS

STEADY 

STATE

DEFINE 

HYPOTHESIS

DESIGN & 

EXECUTE
LEARN FIX EMBED

@GEERTVDC



DEFINE HYPOTHESIS

BRAINSTORM WHAT CAN GO WRONG

BRING EVERYONE

DEVELOPERS

SRE / OPERATIONS

NETWORKS

BUSINESS

INFRASTRUCTURE

TESTERS

WHAT CAN GO WRONG?

WHAT IF DATABASE IS DOWN?

WHAT IF SERVICE RESPONDS SLOWER?

WHAT IF MY CACHE RESPONDS SLOW?

WHAT IF A POD DIES?

WHAT IF LOADBALANCER STOPS?

WHAT IF ….?



STOP IF YOU KNOW THE 

EXPERIMENT WILL BREAK

@GEERTVDC



DESIGN & EXECUTE EXPERIMENT

STEADY 

STATE

DEFINE 

HYPOTHESIS

DESIGN & 

EXECUTE
LEARN FIX EMBED

@GEERTVDC



DESIGN & EXECUTE EXPERIMENT

START SMALL

NOTIFY PEOPLE INVOLVED

SLOWLY INCREASE BLAST RADIUS

TOOLS:
GREMLIN.COM

CHAOSTOOLKIT.ORG

GITHUB.COM/NETFLIX/SIMIANARMY

GITHUB.COM/ASOBTI/KUBE-MONKEY

@GEERTVDC



LEARN

STEADY 

STATE

DEFINE 

HYPOTHESIS

DESIGN & 

EXECUTE
LEARN FIX EMBED

@GEERTVDC



LEARN

HOW FAST DID WE RECOVER?

HOW FAST DID WE DETECT?

DO NOT BLAME!

@GEERTVDC



FIX

STEADY 

STATE

DEFINE 

HYPOTHESIS

DESIGN & 

EXECUTE
LEARN FIX EMBED

@GEERTVDC



FIX

IMPLEMENT FIX

RERUN EXPERIMENT

@GEERTVDC



EMBED

STEADY 

STATE

DEFINE 

HYPOTHESIS

DESIGN & 

EXECUTE
LEARN FIX EMBED

@GEERTVDC



EMBED

ONBOARDING

CONTINUOUS CHAOS

EMBED IN CULTURE

@GEERTVDC



PATTERNS

RESILIENT ARCHITECTURE

@GEERTVDC

PARALLEL EXECUTION

ASYNC COMMUNICATION

QUEUE BASED LOAD DISTRIBUTION

IDEMPOTENT APIS

BULKHEAD PATTERN

CIRCUIT BREAKERS

SPLIT RESPONSIBILITIES



MULTI PARALELLISM

PARALLELISM AVAILABILITY DOWNTIME PER YEAR

1 99% 3 DAYS 16 HOURS

2 99,99% 53 MINUTES

3 99,9999% 32 SECONDS

HOW PARALEL IS YOUR CLOUD COMPONENT ?

REGIONSAVAILABILITY ZONES

@GEERTVDC



ASYNC COMMUNICATION

SYNC REQUIRES A CONNECTION PER REQUEST

FOCUS ON MESSAGE BASED COMMUNICATION

DECOUPLING PUB SUB LISTENER

@GEERTVDC



QUEUE BASED LOAD DISTRIBUTION

@GEERTVDC



QUEUE BASED LOAD DISTRIBUTION

SERVICE BUS

@GEERTVDC



IDEMPOTENT APIS

HTTP METHOD IDEMPOTENCE SAFETY

GET YES YES

HEAD YES YES

PUT YES NO

DELETE YES NO

POST NO NO

PATCH NO NO

@GEERTVDC



BULKHEAD PATTERN

ISOLATE WORKLOADS LIKE THE HULL OF A SHIP

@GEERTVDC



CIRCUIT BREAKER

@GEERTVDC



CIRCUIT BREAKER

ADD JITTER TO RETRIES



SPLIT RESPONSIBILITIES

READ / WRITE SHARDING

CQRS

@GEERTVDC



WRAP UP

BIG CULTURE CHANGE

FULL CYCLE DEVELOPERSPRODUCTION ACCESS

START EXPERIMENTING

START SMALL CHECK OUT TOOLSOBSERVABILITY

@GEERTVDC



“CHAOS ENGINEERING DOESN’T CAUSE 
PROBLEMS, IT JUST REVEALS THEM” 

NORA JONES – CHAOS ENGINEERING LEAD SLACK



GEERT VAN DER CRUIJSEN

@GEERTVDC

THANK YOU!
ALL PICTURES USED ARE FROM UNSPLASHED.COM

RESOURCES

BOOKS:

Chaos engineering -O’Reilly

Chaos engineering observability -O’Reilly

TOOLS:

chaostoolkit.org

gremlin.com

github.com/netflix/simianarmy

github.com/asobti/kube-monkey

RESOURCES:
principlesofchaos.org

github.com/dastergon/awesome-chaos-engineering

docs.microsoft.com/en-us/azure/architecture/patterns/category/resiliency


