
Designing function families and
bundles with Java’s Behaviours
parameterization and lambdas

#DevDays Europe @alainlompo join at slido with #devdays2019

Alain Lompo

Senacor Technologies AG

About me
 I am a software developer at Senacor

 Building e-banking solutions using

o Java (JEE/Spring boot) in the backend

oAngular/React on the frontend

 Available at: @alainlompo

Plan
 Motivation

 Functional programming to the rescue

 Behaviors parameterization

 Designing families of functions

 Applications and Demos

 Wrap - up

MOTIVATION

User requirements are sinking sand

 They always seem good at first

 But they always change later

 It happens generally during the course of implementation

 Sometimes even later

Blaming it on the methodology

 It does not matter which methodology is used, the problem

will still be there

 We simply find out about it earlier or later depending on the

methodology

 With agile methods we find about it earlier

Costs optimisation
 Software maintenance costs generally more than its initial

implementation

 Behavior’s parameterization can help reduce these costs

significantly

Keeping the developers happy
 Developers generally feel happy when

o The task has been successfully implemented, tested and set as

Ready for PROD (green check mark)

o The task was not specified clearly enough so it is set in a

« REQUIRES CLARIFICATIONS » or « BLOCKED » status

o In both case they can move forward with new (and exciting) tasks

and live happily ever after.

Functionnal programming to the

rescue

 Finish on time and meet deadlines

oReduces time to market for your projects

 Write correct code

oAvoid mutability and state handling issues

oAvoid null values handlind and NPEs

oAvoid external iterations

oExpress intent and « the what » rather than « the how »

Main benefits of functional programming

Main benefits of functional programming

 Handle complexity

o…with simpler code

o Leads to using more advanced algorithms and providing better

functionalities

 Efficient and scalable code

oEasier to parallelize code

oBetter abstractions for writing reactive code

oBetter abstractions for writing asynchronous code

Objects vs functions
 In OOP everything is an object

 Sometime we simply need to use a functionality without

needing a whole class

 With functional programming, functions become first class

citizens

Passing behaviors through interfaces

Core concepts
 Lambdas expressions

 Functional interfaces

Lambdas expressions
 With the OOP approach we could pass behaviors through

interfaces

 But to use them we had to:

oCreate the interface

oCreate a class that implements the interface

oDefine a method with a signature that takes the interface as

parameter

oCall the method an give it an object that is an instance of a class

that implements the interface

Lambdas expressions
 What if we could find a way to avoid all that extra stuff and

just pass the action we want done?

Functions as values
 How can we define functions as values?

 So that we could associate them (the functions, not the result

of their execution) to variables and reuse them?

 Lambdas expressions allow us to do that

Lambdas expressions

lambda1 = () -> System.out.println(« Hello
world »);

Lambda2 = (amount, interestRate) -> amount *
(1 + interestRate);

Lambda3 = n -> 1 + 1/n;

 Let’s see how to build them

Functional interfaces

public interface Runnable {
void run();

}

@FunctionalInterface
public interface Updatable {

public void update(Resource
resource);

}

Behaviors parameterization

(Demos)

Designing families and bundles of

functions

Using the strategy pattern

Context

Strategy: Strategy

operation()

Strategy

algorithmOperation()

ConcreteStrategy1

algorithmOperation()

ConcreteStrategy2

algorithmOperation()

1 1

Parameterizing a family of behaviors

 The strategy pattern is useful if the application needs to

choose between several algorithms or parts of algorithms

 Example:

oSeveral tasks are similar except they differ in a small subtask

oWith strategy with define the common part and parameterize the

varying subtask

oApplying it with functional programming we can parameterize a

familiy of functions

The strategy interface as functional interface

 The strategy interface has only one method

 It is therefore a good candidate to be used as a functional

interface

using the command design pattern
Invoker Command

invoke()

Receiver

operationX()

operationY()

ConcreteCommand

Receiver: Receiver

invoke()

1 1

void invoke {
receiver.operationX();

}

Parameterizing a family of behaviors

 The command pattern

oDescribes a way to represent actions in an application

oUsed to store « unit of processing » that can be later re-invoked

o For example to make a revert

oCollections of command are often used to specify steps of

operations that the user can choose from

The command operation as functional interface

 The command operation interface has only one method

 It is therefore a good candidate to be used as a functional

interface

Receiver component and mutable state

 In OOP the receiver is mutable

 It holds somewhat the state and updates it after each

command (when necessary)

 In functional programming with DO NOT mutate state

 But we can manage the return value of each command.

Decision trees
 Very popular in machine learning

 Can be used for:

oMaking decisions based on some datas

oClassifying input into various categories

 The algorithm works with a tree that specifies

oWhat properties of the data should be tested

oWhat to be done with each possible answer

 The reaction can be another test or the final answer

Decision trees
Big

income?

Wrong

behavior

?

Age?

Credit

card?

High risk Low risk Low risk Low risk High risk

yes

yesno>= 18

< 18

yes no

no

Wrap-Up

Wrapping up
 User requirements are sinking sand

 OOP linked behavior to datas and made objects

 But sometimes the ceremony/rituals of OOP are meaningless

 Therefore FP comes to the rescue

Wrapping up
 Functional programming permits costs optimisations

 And helps keep developers happy

 It does that by enabling us to parameterize behaviors

oBy treating functions as values and allowing us to pass them as

parameters

o In java an interface with one method is treated as functional

interface

Wrapping up
 We can therefore apply functional programming to behavioral

design pattern to build paramaterized families and bundles of

functions

 And doing so greatly reduce the necessity of modifying code

with each fluctuation of user requirements

Questions?

join at slido with #devdays2019

Thank you !

Resources
 https://stackabuse.com/behavioral-design-patterns-in-java/

https://stackabuse.com/behavioral-design-patterns-in-java/

