
Designing function families and
bundles with Java’s Behaviours
parameterization and lambdas

#DevDays Europe @alainlompo join at slido with #devdays2019

Alain Lompo

Senacor Technologies AG

About me
 I am a software developer at Senacor

 Building e-banking solutions using

o Java (JEE/Spring boot) in the backend

oAngular/React on the frontend

 Available at: @alainlompo

Plan
 Motivation

 Functional programming to the rescue

 Behaviors parameterization

 Designing families of functions

 Applications and Demos

 Wrap - up

MOTIVATION

User requirements are sinking sand

 They always seem good at first

 But they always change later

 It happens generally during the course of implementation

 Sometimes even later

Blaming it on the methodology

 It does not matter which methodology is used, the problem

will still be there

 We simply find out about it earlier or later depending on the

methodology

 With agile methods we find about it earlier

Costs optimisation
 Software maintenance costs generally more than its initial

implementation

 Behavior’s parameterization can help reduce these costs

significantly

Keeping the developers happy
 Developers generally feel happy when

o The task has been successfully implemented, tested and set as

Ready for PROD (green check mark)

o The task was not specified clearly enough so it is set in a

« REQUIRES CLARIFICATIONS » or « BLOCKED » status

o In both case they can move forward with new (and exciting) tasks

and live happily ever after.

Functionnal programming to the

rescue

 Finish on time and meet deadlines

oReduces time to market for your projects

 Write correct code

oAvoid mutability and state handling issues

oAvoid null values handlind and NPEs

oAvoid external iterations

oExpress intent and « the what » rather than « the how »

Main benefits of functional programming

Main benefits of functional programming

 Handle complexity

o…with simpler code

o Leads to using more advanced algorithms and providing better

functionalities

 Efficient and scalable code

oEasier to parallelize code

oBetter abstractions for writing reactive code

oBetter abstractions for writing asynchronous code

Objects vs functions
 In OOP everything is an object

 Sometime we simply need to use a functionality without

needing a whole class

 With functional programming, functions become first class

citizens

Passing behaviors through interfaces

Core concepts
 Lambdas expressions

 Functional interfaces

Lambdas expressions
 With the OOP approach we could pass behaviors through

interfaces

 But to use them we had to:

oCreate the interface

oCreate a class that implements the interface

oDefine a method with a signature that takes the interface as

parameter

oCall the method an give it an object that is an instance of a class

that implements the interface

Lambdas expressions
 What if we could find a way to avoid all that extra stuff and

just pass the action we want done?

Functions as values
 How can we define functions as values?

 So that we could associate them (the functions, not the result

of their execution) to variables and reuse them?

 Lambdas expressions allow us to do that

Lambdas expressions

lambda1 = () -> System.out.println(« Hello
world »);

Lambda2 = (amount, interestRate) -> amount *
(1 + interestRate);

Lambda3 = n -> 1 + 1/n;

 Let’s see how to build them

Functional interfaces

public interface Runnable {
void run();

}

@FunctionalInterface
public interface Updatable {

public void update(Resource
resource);

}

Behaviors parameterization

(Demos)

Designing families and bundles of

functions

Using the strategy pattern

Context

Strategy: Strategy

operation()

Strategy

algorithmOperation()

ConcreteStrategy1

algorithmOperation()

ConcreteStrategy2

algorithmOperation()

1 1

Parameterizing a family of behaviors

 The strategy pattern is useful if the application needs to

choose between several algorithms or parts of algorithms

 Example:

oSeveral tasks are similar except they differ in a small subtask

oWith strategy with define the common part and parameterize the

varying subtask

oApplying it with functional programming we can parameterize a

familiy of functions

The strategy interface as functional interface

 The strategy interface has only one method

 It is therefore a good candidate to be used as a functional

interface

using the command design pattern
Invoker Command

invoke()

Receiver

operationX()

operationY()

ConcreteCommand

Receiver: Receiver

invoke()

1 1

void invoke {
receiver.operationX();

}

Parameterizing a family of behaviors

 The command pattern

oDescribes a way to represent actions in an application

oUsed to store « unit of processing » that can be later re-invoked

o For example to make a revert

oCollections of command are often used to specify steps of

operations that the user can choose from

The command operation as functional interface

 The command operation interface has only one method

 It is therefore a good candidate to be used as a functional

interface

Receiver component and mutable state

 In OOP the receiver is mutable

 It holds somewhat the state and updates it after each

command (when necessary)

 In functional programming with DO NOT mutate state

 But we can manage the return value of each command.

Decision trees
 Very popular in machine learning

 Can be used for:

oMaking decisions based on some datas

oClassifying input into various categories

 The algorithm works with a tree that specifies

oWhat properties of the data should be tested

oWhat to be done with each possible answer

 The reaction can be another test or the final answer

Decision trees
Big

income?

Wrong

behavior

?

Age?

Credit

card?

High risk Low risk Low risk Low risk High risk

yes

yesno>= 18

< 18

yes no

no

Wrap-Up

Wrapping up
 User requirements are sinking sand

 OOP linked behavior to datas and made objects

 But sometimes the ceremony/rituals of OOP are meaningless

 Therefore FP comes to the rescue

Wrapping up
 Functional programming permits costs optimisations

 And helps keep developers happy

 It does that by enabling us to parameterize behaviors

oBy treating functions as values and allowing us to pass them as

parameters

o In java an interface with one method is treated as functional

interface

Wrapping up
 We can therefore apply functional programming to behavioral

design pattern to build paramaterized families and bundles of

functions

 And doing so greatly reduce the necessity of modifying code

with each fluctuation of user requirements

Questions?

join at slido with #devdays2019

Thank you !

Resources
 https://stackabuse.com/behavioral-design-patterns-in-java/

https://stackabuse.com/behavioral-design-patterns-in-java/

