
From zero to hero with 
the Reactive Extensions 
for JavaScript
Maurice de Beijer

@mauricedb



Who am I?

 Maurice de Beijer

 The Problem Solver

 Microsoft Azure MVP

 Freelance developer/instructor

 Twitter: @mauricedb and @React_Tutorial

 Web: http://www.TheProblemSolver.nl

 E-mail: maurice.de.beijer@gmail.com

2



http://bit.ly/2J20hkQ


Topics

 What is RxJS?

 Why use it?

 How to create observables.

 Using operators with observables.



https://rxjs.dev/


http://reactivex.io/


Observer 
pattern

https://en.wikipedia.org/wiki/Observer_pattern


Iterator 
pattern

https://en.wikipedia.org/wiki/Iterator_pattern


Why?

 Reactive programming.
 Programming with asynchronous data streams.

 Most actions are not standalone occurrences.
 Example: A mouse click triggers an Ajax request which triggers a UI 

update.

 RxJS composes these streams in a functional style.



Filtering data



With array 
functions



With RxJS



Fetching data



With promises



With RxJS



Asynchronous data



With 
imperative 
code



With RxJS



The RxJS
Observable

 An Observable is the object that emits a stream of event.
 The observer is the code that subscribes to the event stream.



A simple clock



Unsubscribing



Creating 
observables



RxJS operators

 Operators are used to operate on the event stream between the 
source and the subscriber.

 There are many operators for all sorts of purposes:
 Transforming

 Filtering

 Combining

 Error handling

 Aggregate 

 …



RxMarbles
Interactive diagrams of 
Rx Observables

http://rxmarbles.com/


Events



Ajax



Retry failed 
requests



Retry with 
backing off



Combining 
streams

 Streams can be combined in may ways:
 Switching

 Combine

 Merging

 Zip

 …



Merge 
Example



Conclusion

 Reactive programming is very powerful.

 Compose multiple asynchronous data streams.

 Transform streams using operators as needed.

 Retry failures.

 Cancel subscriptions as needed.



Thank you

Maurice de Beijer - @mauricedb


