# Quantum Computing deep dive

Johnny Hooyberghs Robin Vercammen

### Why am I presenting this talk?

- As a human, I like to experiment and discover
- As a software engineer, I like to learn new technical stuff
- As a teacher, I like to teach and get people enthusiastic

### What will you do after this talk?

- ☑ Be able to explain why quantum computing matters?
- ☑ Study more about quantum computing?
- $\blacksquare$  Understand the basics about quantum computing?
- 🗵 Decipher quantum algorithms?
- Ise quantum computing tomorrow?
- $\blacksquare$  Use quantum computing in the next decade?

### Agenda

- Why Quantum Computing?
- Classic vs. Quantum
- Quantum superposition & entanglement
- Bit vs. Qubit
- IBM Q Experience
- Microsoft Q#
- Quantum Algorithms



### Why Quantum Computing?

- Moores law has its physical limits
- Current classical computing architectures already have issues with quantum effects because of their scale
- Why try to simulate a quantum world using classical computers

### Why Quantum Computing?

## Why Quantum Computing?

### Classical vs. Quantum

### • Security

- Public / private key encryption
- Makes current encryption obsolete
- QKD (Quantum Key Distribution)



### Classical vs. Quantum

- Artificial Intelligence
  - Analyze large quantities of data
  - Fast feedback
  - Emulate human mind



### Classical vs. Quantum

- Drug development
  - It takes a quantum system to emulate quantum mechanics
  - Interactions between molecules
  - Gene sequencing



# CAN IT RUN CRYSIS?

### Superposition and Entanglement

- Quantum Physics describes superposition and entanglement of quantum particles
- Quantum Computing can use these phenomenon to its advantage

# Superposition

### Superposition





# Entanglement









|             |           |                   | A REAL PROPERTY OF THE REAL PROPERTY OF THE PARTY OF THE |
|-------------|-----------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bits vs. Qu | bits      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Identity    | (.) = .   | $0 \rightarrow 0$ | $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             |           | 1→1               | $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Negation    | (. ) = ¬. | $0 \rightarrow 1$ | $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             |           | $1 \rightarrow 0$ | $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Constant-0  | (. ) = 0  | $0 \rightarrow 0$ | $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             |           | $1 \rightarrow 0$ | $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Constant-1  | (, ) = 1  | $0 \rightarrow 1$ | $\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             |           | $1 \rightarrow 1$ | $\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

- Classical bit 0, Quantum bit  $|0\rangle$
- Classical bit 1, Quantum bit  $|1\rangle$
- Quantum bit in superposition

### $|0\rangle + |1\rangle$ where |1+|1| =

- and are complex number (a + b)
- Value known after measurement
- Collapses to 0 with probability or 1 with probability .

• 2 Qubit system (4 values):

alues): |00>+ |01>+ |10>+ |11>

• 3 Qubit system (8 values):

 $|000\rangle + |001\rangle + |010\rangle + |011\rangle + |100\rangle + |110\rangle + |101\rangle + |111\rangle$ 

• 4 Qubit system (16 values):

















- Collapses a qubit to either
   or
- A qubit in superposition has a 50% chance to collapse to
  | > and a 50% chance to
  collapse to | >
- A measurement destroys any complex quantum state



### Entanglement

• If the product state of two qubits cannot be factored, they are entangled

This set of two qubits has a 50% chance of collapsing to |00> and a 50% chance of collapsing to |11>

### IBM Q Experience

https://quantumexperience.ng.bluemix.net





### Microsoft Q#

https://www.microsoft.com/en-us/quantum/development-kit



### Quantum Algorithms

- Deutch (1985)
  - Is there a problem that a Quantum Computer can solve faster than a Classical Computer?
  - Deterministic!
- Deutsch–Jozsa (1992)
  - Based on Deutch (for 1 bit), but applicable for n-bits
  - Deterministic!
- Grover's algorithm (1996)
  - "Searching a database"
  - Probabilistic!
- Shor's algorithm (1994)
  - Prime factorization of large integers
  - Combination of classical and quantum algorithm
  - Probabilistic!

- Can a Quantum Computer be quicker than a Classical Computer?
- A Black-Box containing a function on one bit
- How many operations do you need to figure out the function if input and output is know?

BB

 $\left( \begin{array}{c} \\ \end{array} \right)$ 

- On a Classical Computer?
- On a Quantum Computer?

- It is important to ask the right question!
- A Black-Box containing a function on one bit
- How many operations do you need to figure out if the function is CONSTANT or VARIABLE if input and output is know?

BB

 $\left( \begin{array}{c} . \end{array} \right)$ 

- On a Classical Computer?
- On a Quantum Computer?

- It is important to ask the right question!
- A Black-Box containing a function on one bit
- How many operations do you need to figure out if the function is CONSTANT or VARIABLE if input and output is know?

 $|0\rangle$ 

BB

- On a Classical Computer?
- On a Quantum Computer?



- If BB is a constant function  $\rightarrow$  Quantum state will always measure to  $|11\rangle$
- If BB is a variable function  $\rightarrow$  Quantum state will always measure to  $|01\rangle$

• Constant-0





• Constant-0





• Constant-1





• Constant-1





Identity





Identity





Negation





Negation







Constant-0 (calculated proof – part 1)

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \xrightarrow{\cdot} \begin{pmatrix} 0&1\\1&0 \end{pmatrix} \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 0\\1 \end{pmatrix} \xrightarrow{\cdot} \begin{pmatrix} 1\\\sqrt{2}\\1\\\sqrt{2}\\\sqrt{2} \end{pmatrix} \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 1\\\sqrt{2}\\-1\\\sqrt{2}\\\sqrt{2} \end{pmatrix}$$
$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \xrightarrow{\cdot} \begin{pmatrix} 0&1\\1&0 \end{pmatrix} \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 0\\1 \end{pmatrix} \xrightarrow{\cdot} \begin{pmatrix} 1\\\sqrt{2}\\1\\\sqrt{2}\\\sqrt{2}\\\sqrt{2} \end{pmatrix} \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 1\\\sqrt{2}\\-1\\\sqrt{2}\\-1\\\sqrt{2} \end{pmatrix}$$
$$|0\rangle = \begin{pmatrix} 1\\\sqrt{2}\\-1\\\sqrt{2}\\\sqrt{2}\\\sqrt{2} \end{pmatrix} \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 1\\\sqrt{2}\\-1\\\sqrt{2}\\\sqrt{2}\\\sqrt{2} \end{pmatrix}$$

• Constant-0 (c

calculated proof – part 2)  

$$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix} \xrightarrow{\bullet} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle$$

$$\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle$$



Constant-1 (calculated proof – part 1)

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \stackrel{\cdot}{\rightarrow} \begin{pmatrix} 0&1\\1&0 \end{pmatrix} \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 0\\1 \end{pmatrix} \stackrel{\cdot}{\rightarrow} \begin{pmatrix} \frac{1}{\sqrt{2}}\\1\\\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}} \end{pmatrix}$$
$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \stackrel{\cdot}{\rightarrow} \begin{pmatrix} 0&1\\1&0 \end{pmatrix} \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 0\\1 \end{pmatrix} \stackrel{\cdot}{\rightarrow} \begin{pmatrix} \frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}} \end{pmatrix}$$

 Constant-1 (calculated proof – part 2)  $\frac{\sqrt{2}}{-1}$   $\sqrt{2}$ √2 1 (0  $\sqrt{2}$  $\sqrt{2}$  $\sqrt{2}$ 1) 0/  $\sqrt{2}$  $\sqrt{2}$  $\sqrt{2}$  $\sqrt{2}$  $\sqrt{2}$ -√2 -1  $\sqrt{2}$  $\sqrt{2}$ √2  $\sqrt{2}$  $\sqrt{2}$ 0 1) 1 0  $\sqrt{2}$  $\sqrt{2}$  $\sqrt{2}$  $\sqrt{2}$  $\sqrt{2}$  $\sqrt{2}$ 



Identity (calculated proof – part 1)

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}^{-} \rightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}^{-} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}^{-} \rightarrow \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}^{-} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} \otimes \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2}$$

• Identity (calculated proof – part 2)

$$\begin{pmatrix} \frac{1}{2} \\ \frac$$

• Negation (circuit overview)



Negation (calculated proof – part 1)

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \stackrel{\cdot}{\to} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \stackrel{\cdot}{\to} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \stackrel{\cdot}{\to} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \stackrel{\cdot}{\to} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \stackrel{\cdot}{\to} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \stackrel{\cdot}{\to} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \stackrel{\cdot}$$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

• Negation (calculated proof – part 2)

$$\begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}$$



"About your cat, Mr. Schrödinger – I have good news and bad news."



johnny.hooyberghs@involved-it.be @djohnnieke robin.vercammen@involved-it.be @Robin\_Vercammen

https://github.com/Djohnnie/QuantumComputingQSharpIntroduction2018

www.involved-it.be