Quantum computing deep dive

Johnny Hooyberghs Robin Vercammen

Why am I presenting this talk?

- As a human, I like to experiment and discover
- As a software engineer, I like to learn new technical stuff
- As a teacher, I like to teach and get people enthusiastic

What will you do after this talk?

- $\boxed{ }$ Be able to explain why quantum computing matters?
- \square Study more about quantum computing?
- \square Understand the basics about quantum computing?
- \checkmark Run quantum algorithms using IBM Q Experience and Mierosoft Q\#?
- ® Decipher quantum algorithms?
- 区 Use quantum computing tomorrow?
- \boxtimes Use quantum computing in the next decade?

Agenda

-Why Quantum Computing?

- Classic vs. Quantum
- Quantum superposition \& entanglement
- Bit vs. Qubit
- IBM Q Experience
- Microsoft Q\#
- Quantum Algorithms

Why Quantum Computing?

- Moores law has its physical limits
- Current classical computing architectures alreädy have issues with quantum effects because of their scale
- Why try to simulate a quantum world using classical computers

Why Quantum Computing?

Classical vs. Quantum

- Security
- Public / private key encryption
- Makes current encryption obsolete
- QKD (Quantum Key Distribution)

Classical vs. Quantum

- Artificial Intelligence
- Analyze large quantities of data
- Fast feedback
- Emulate human mind

Classical vs. Quantum

- Drug development
- It takes a quantum system to emulate quantum mechanics
- Interactions between molecules
- Gene sequencing

Superposition and Entanglement

- Quantum Physics describes superposition and entanglement of quantum particles
- Quantum Computing can use these phenomenon to its ladvantage

Superposition

Superposition

Entanglement

Bits vs. Qubits

0

Bits vs. Qubits

$\binom{1}{0}$

Bits vs. Qubits

Identity

$$
\begin{array}{ll}
(.)=. & 0 \rightarrow 0 \\
& 1 \rightarrow 1
\end{array}
$$

Negation
$()=.\neg . \quad 0 \rightarrow 1$
$1 \rightarrow 0$
Constant-0

$$
\begin{array}{ll}
(.)=0 & 0 \rightarrow 0 \\
& 1 \rightarrow 0
\end{array}
$$

Constant-1
(.) = $1 \quad 0 \rightarrow 1$
$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\binom{1}{0}=\binom{1}{0}$
$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\binom{0}{1}=\binom{0}{1}$
$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{1}{0}=\binom{0}{1}$
$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{0}{1}=\binom{1}{0}$
$\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)\binom{1}{0}=\binom{1}{\frac{1}{0}}$
$\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)\binom{0}{1}=\binom{1}{0}$

$$
\begin{array}{ll}
\text { (. })=1 & 0 \rightarrow 1 \\
& 1 \rightarrow 1
\end{array}
$$

$$
\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right)\binom{1}{0}=\binom{0}{1}
$$

$\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)\binom{0}{1}=\binom{0}{1}$

Bits vs. Qubits

- Classical bit 0, Quantum bit |0
- Classical bit 1, Quantum bit |1)
- Quantum bit in superposition

$$
|0\rangle+|1\rangle \text { where }||+| |=1
$$

- and are complex number $(\mathrm{a}+\mathrm{b})$
- Value known after measurement
- Collapses to 0\rangle with probability
or 1) with probability

Bits vs. Qubits

- 2 Qubit system (4 values):

$$
|00\rangle+|01\rangle+|10\rangle+|11\rangle^{\prime}
$$

- 3 Qubit system (8 values):

$$
|000\rangle+|001\rangle+|010\rangle+|011\rangle+|100\rangle+|110\rangle+|101\rangle+|111\rangle
$$

- 4 Qubit system (16 values):

Bits vs. Qubits

$$
\begin{gathered}
\left.\rangle=| 0\rangle+\frac{1}{1} 1\right\rangle \\
\rangle=\cos (-)| 0\rangle+\sin (-)|1\rangle
\end{gathered}
$$

Bits vs. Qubits

Bits vs. Qubits

$\times \quad$ Bit-Flip

Bits vs. Qubits

H Hadamard

Bits vs. Qubits

:

CNOT
(2-qubit gate)

Bits vs. Qubits

- Collapses a qubit to either | > or 1 ${ }^{\text {l }}$
- A qubit in superposition has

자 Measurement a 50% chance to collapse to | > and a 50\% chance to collapse to |

- A measurement destroys any complex quantum state

Entanglement

Entanglement

- If the product state of two qubits cannot be factored, theyjare entánglead

$$
\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right)=() \otimes() \rightarrow \begin{aligned}
& = \\
& \\
& = \\
& \\
& =0 \\
& \\
& \\
& =\frac{1}{\sqrt{2}} \\
& \sqrt{2}
\end{aligned}
$$

- This set of two qubits has a 50% chance of collapsing to $|00\rangle$ and a 50% chance of collapsing to |11〉

IBM Q Experience

- https://quantumexperience.ng.bluemix.net

Microsoft Q\#

- https://www.microsoft.com/en-us/quantum/development-kit.

$$
\begin{aligned}
& \text { 무줌 }
\end{aligned}
$$

Quantum Algorithms

- Deutch (1985)
- Is there a problem that a Quantum Computer can solve faster than a Classiçal Computer?
- Deterministic!
- Deutsch-Jozsa (1992)
- Based on Deutch (for 1 bit), but applicable for n-bits
- Deterministic!
- Grover's algorithm (1996)
- "Searching a database"
- Probabilistic!
- Shor's algorithm (1994)
- Prime factorization of large integers
- Combination of classical and quantum algorithm
- Probabilistic!

Deutsch's algorithm

- Can a Quantum Computer be quicker than a Classicall Compúter?
- A Black-Box containing a function on one bit
- How many operations do you need to figure out the funetion if input and output is know?
- On a Classical Computer?
- On a Quantum Computer?

Deutsch's algorithm

- It is important to ask the right question!
- A Black-Box containing a function on one bit
- How many operations do you need to figure out if the furection is CONSTANT or VARIABLE if input and output is know?
- On a Classical Computer?
- On a Quantum Computer?

Deutsch's algorithm

- It is important to ask the right question!
- A Black-Box containing a function on one bit
- How many operations do you need to figure out if the furection is CONSTANT or VARIABLE if input and output is know?
- On a Classical Computer?
- On a Quantum Computer?

Deutsch's algorithm

- If BB is a constant function \rightarrow Quantum state will always measure to $|11\rangle$
- If BB is a variable function \rightarrow Quantum state will always measure to $|01\rangle$

Deutsch's algorithm

- Constant-0

Deutsch's algorithm

- Constant-0

Deutsch's algorithm

- Constant-1

Deutsch's algorithm

- Constant-1

Deutsch's algorithm

- Identity

Deutsch's algorithm

- Identity

Deutsch's algorithm

- Negation

Deutsch's algorithm

- Negation

Deutsch's algorithm

- Constant-0 (circuit overview)

Deutsch's algorithm

- Constant-0 (calculated proof - part 1)

$$
\begin{aligned}
& |0\rangle=\binom{1}{0} \rightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0}=\binom{0}{1} \rightarrow\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right)\binom{0}{1}\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}} \\
& |0\rangle=\binom{1}{0} \rightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0}=\binom{0}{1} \rightarrow\left(\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right)\binom{0}{1}=\binom{\frac{-1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}}
\end{aligned}
$$

Deutsch's algorithm

- Constant-0 (calculated proof - part 2)

$$
\begin{aligned}
& \left.\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}} \rightarrow\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right)\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}}=\binom{0}{1}=| |\right\rangle \\
& \binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}} \rightarrow\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right)\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}}=\binom{0}{1}=|1\rangle
\end{aligned}
$$

Deutsch's algorithm

- Constant-1 (circuit overview)

Deutsch's algorithm

- Constant-1 (calculated proof - part 1)

$$
\begin{aligned}
& |0\rangle=\binom{1}{0} \rightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0}=\binom{0}{1} \rightarrow\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right)\binom{0}{1}\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}} \\
& |0\rangle=\binom{1}{0} \rightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0}=\binom{0}{1} \rightarrow\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right)\binom{0}{1}=\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}}
\end{aligned}
$$

Deutsch's algorithm

- Constant-1 (calculated proof - part 2)

$$
\begin{aligned}
& \binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}} \rightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}}=\binom{\frac{-1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} \rightarrow\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
1 & \frac{-1}{\sqrt{2}} \\
\sqrt{2}
\end{array}\right)\left(\begin{array}{c}
\frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right) \rightarrow\binom{0}{-1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}}=\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}} \rightarrow\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{l}
1 \\
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right)=\binom{0}{1}=|1\rangle
\end{aligned}
$$

Deutsch's algorithm

- Identity (circuit overview)

Deutsch's algorithm

- Identity (calculated proof - part 1)

$$
\begin{aligned}
& |0\rangle=\binom{1}{0} \rightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0}=\binom{0}{1} \rightarrow\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right)\binom{0}{1}=\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}} \\
& |0\rangle=\binom{1}{0} \rightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0}=\binom{0}{1} \rightarrow\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right)\binom{0}{1}=\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}}= \\
& \left(\begin{array}{c}
1 \\
\sqrt{2} \\
\frac{-1}{\sqrt{2}}
\end{array}\right)=\left(\frac{1}{\sqrt{2}}-\frac{-1}{\sqrt{2}}\right)=
\end{aligned}
$$

Deutsch's algorithm

- Identity (calculated proof - part 2)

Deutsch's algorithm

- Negation (circuit overview)

Deutsch's algorithm

- Negation (calculated proof - part 1)

$$
\begin{aligned}
& |0\rangle=\binom{1}{0} \rightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0}=\binom{0}{1}_{\rightarrow}\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right)\binom{0}{1}=\binom{\frac{1}{\sqrt{2}}}{\frac{-1}{\sqrt{2}}}=\binom{(1)}{\left.\left\lvert\, \begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}}
\end{array}\right.\right)\binom{0}{\frac{-1}{\sqrt{2}}}=\left(\begin{array}{l}
\frac{1}{2} \\
1 \\
1
\end{array}\right)=\binom{\frac{1}{2}}{\frac{-1}{\sqrt{2}}}}
\end{aligned}
$$

Deutsch's algorithm

- Negation (calculated proof - part 2)

"About your cat, Mr. Schrödinger - I have good news and bad news."

$\left(\begin{array}{ll}\frac{}{\sqrt{~}} & \frac{z}{\sqrt{ }} \\ \frac{-}{\sqrt{ }} & \frac{-}{\sqrt{ }}\end{array}\right)\binom{$ Johnny Hooyberghs }{ Robin Vercammen }

johnny.hooyberghs@involved-it.be @djohnnieke robin.vercammen@involved-it.be @Robin_Vercammen
*. https://github.com/Djohnnie/QuantumComputingQSharpIntroduction2018

