
Beyond JavaScript Frameworks:  
Writing Reliable Web Apps With

Elm
Erik Wendel  

DevDays Vilnius 2018

Jonathan Ive?
Who is

Erik Wendel  
JavaZone 2017

– Peder Korsveien

Elm is like Jonathan Ive would have designed a
programming language – it is minimalistic, user-

friendly and it just works

How many of you…

…write JavaScript at work?

Did you ever…

…ship an app with confidence it
wouldn`t crash in production?  

(without loads of QA)

Did you ever…

…feel completely safe after a  
large refactor of the frontend code?

Did you ever…

…become overwhelmed by
the amount of frontend tech

in 2018?

Did you ever…

…feel like not all team members
are comfortable with frontend

tasks?

Check, check, check…

JavaScript fatigue

Worrysome refactors

Nail-biting deploys

Dedicated frontend devs

✅

✅

✅

✅

I will argue that Elm addresses these

while also providing

a dedicated pair-programmer

error messages that actually help

no runtime errors

User interface expert, experienced
with javascript and single-page

apps

Erik Wendel
Serving Elm in

production to 1M+
users

Web Development
Lead at BEKK

Consulting, Oslo  
(450 people)

Worked with large
Norwegian companies

like SpareBank1 and
NSB

Founder of 
 Oslo Elm Meetup (2016) 

 Oslo Elm Day (2017)

Agenda

1. How Elm works 
 Compared to the JS of today 

2. App Example 
 Counter app

 
3. Does Anyone Use Elm? 
 A few stories and examples 

1. How Elm works 
 Compared to the JS of today 

2. App Example 
 Counter app

 
3. Does Anyone Use Elm? 
 A few stories and examples 

Agenda

Elm is a language compiling to JavaScript
it is not another library or a framework

How does Elm compare to React?

Elm and JavaScript are totally different
In terms of syntax and semantics

How does Elm compare to React?

Elm uses pure functions and virtual dom
to create a tree of components

How does Elm compare to React?

Elm does not allow component state
all state is stored in top-level store, like Redux

How does Elm compare to React?

Elm uses the Redux architecture
actually, it is the other way around - Redux was inspired by Elm

How does Elm compare to React?

“Elm is basically
React-Redux with

type safety”

This is how it works

<div id="container"></div>
<script src=“main.js"></script>

<script>
 var node = document.getElementById('container');
 var app = Elm.Main.embed(node);
</script>

A quick overview

1. Correctness, maintainability and  
 developer-friendliness comes first 
 
2. A functional language of the ML family 
 (F#, OCaml, Haskell)  
 
3. No run-time errors (!)  
 
4. Heavily opinionated

Key Language Features

1. All data is immutable, and there is no null 
 
2. Expression-oriented, no statements  
 Everything evaluates to a value 
 
3. Pure (side-effects handled by runtime)  
 Like redux-saga  
 
4. Architecture as a built-in feature  
 Redux is a JavaScript-adaptation of The Elm Architecture 
 
5. Small but expressive feature set  
 Fits together like Lego  
 Therefore: it’s pretty easy to learn

Let’s see some code!

increment x =
 x + 1

five = increment 4

Functions 
Kind of important in functional
programming

increment : Int -> Int
increment x =
 x + 1

five : Int
five = increment 4

Type Inference 
Elm is smart, but you’d still
want to have explicit types

-- constant
x : Int
x = 42

-- tuple
position : (Int, Int)
position = (3, 2)

-- object (called record)
person : { name : String, age : Int }
person =
 { name = "Erik"
 , age = 30
 }

Data 
Constants, tuples og objects

type alias Coordinates = (Int, Int)

playerPosition : Coordinates
playerPosition = (0,0)

type alias Discount = Int

studentDiscount: Discount
studentDiscount = 10

Type Alias 
Allows us to define
new types

type alias Customer =
 { name: String
 , age: Int
 }

erik : Customer
erik =
 { name = "Erik"
 , age = 24
 }

Type Alias 
Works best with objects

Example 
Three types of customers:  
ordinary, students and
companies

2. Hard to find the possible values of
CustomerType

1. Easy to mistype

3. You don’t get any help from the compiler

4. You end up with lots of fields with dummy
values

type CustomerType
 = Student
 | Corporate
 | Private

Union Types 
Surprisingly useful!

type CustomerType
 = Student Int
 | Corporate String
 | Private

Union Types 
Every branch can contain different values

type CustomerType = Student Discount | Corporate CompanyName | Private

getDiscount : CustomerType -> Discount
getDiscount class =
 case class of
 Student discount ->
 discount
 Corporate name ->
 0
 Private ->
 0 Union Types 

Values are unwrapped
with pattern matching

type Maybe a = Just a | Nothing

Maybe 
Eliminating the need for null and

undefined

type Maybe a = Just a | Nothing

type alias Game =
 { highscore: Maybe Int
 }

Maybe 
Eliminating the need for null and

undefined

type Maybe a = Just a | Nothing

type alias Game =

 { highscore: Maybe Int

 }

getHighscore : Game -> String

getHighscore game =

 case game.highscore of

 Just score ->

 toString score

 Nothing ->

 "No highscore"

Maybe 
The compiler will force us to
handle all cases (similarily
with ajax and other unsafe
operations)

<div class="ninja">
 Banzai!
</div>

HTML 
Creating it in Elm

main =
 div [class "ninja"]
 [span []
 [text "Banzai!"]
]

HTML 
Like React without JSX (hyperscript)

main : Html a

main =

 div [class "ninja"]

 [span []

 [text "Banzai!"]

]

HTML 
What does a mean?

main : Html Msg

main =

 div [class "ninja"]

 [span [onClick DoSomethingCool]

 [text "Banzai!"]

]

HTML 
The Html-type includes the type
that will be created by user
interactions  
(like Redux actions)

-- our entire app state (store)

model: Model

-- represent data with html (react)

view: Model -> Html Msg

-- changes to app state (reducers)

update: Msg -> Model -> Model

The Elm
Architecture

Which JavaScript-libraries would you need to get this out of the box?
1. React 
 Virtual DOM

2. Redux 
 Our built-in architecture

3. ImmutableJS 
 For full immutability  
 
4. TypeScript eller Flow 
 For (a considerably weaker) type safety

5. ESLint 
 Enforcing code style and code-level sanity

Agenda

1. How Elm works 
 Compared to the JS of today 

2. App Example 
 Counter app

 
3. Does Anyone Use Elm? 
 A few stories and examples 

0+ -

1. How Elm works 
 Compared to the JS of today 

2. App Example 
 Counter app

 
3. Does Anyone Use Elm? 
 A few stories and examples 

Agenda

Elm has been around for quite a few years,
attracting attention and generating
conference talks, but is it really ready for
production?  
 
Is anyone using it in their business-critical,
user-facing applications? If so, what’s their
stories? 

So…

First meetup in May 2016 
Huge interest with no marketing  
150 members and 42 attendees 
 
January 2018: 
398 members 
 
Monthly meetups

Oslo Elm Meetup

One-day, single-track conference in  
Oslo, June 2017 
105 attendees 
10 speakers from 5 countries  
All talks are on YouTube 
 
Next edition: most likely fall 2018

Oslo Elm Day

Does Anyone Use Elm?

… yes!

Here’s two example apps 
written in Elm for different reasons

Switcharoo 
Conference information system

NSB
(Norwegian Railways, like

SJ) 
Summer interns doing
seat reservation app

1. Many are experimenting with or using Elm  
 
2. People are happy! (100%“would use again”) 
 
3. Easy onboarding, especially for FPers and  
 React-developers 
 
4. World’s biggest adoptor has around 250k LOC

Summary Of Experience Reports

you’re making a prototype
…or something else that’s small

when dev speed trumps code quality

you use a lot of third party code (like map libs)

the team doesn’t know func. prog. and don’t want to learn

Bad-use cases for Elm:

you know the refactors are coming
complex domain logic

you’re re-creating Excel et. al in the browser

Great use-cases for Elm:

team has little or no knowledge of javascript

code correctness is especially important

Challenges, adressed!

JavaScript fatigue

Worrysome refactors

Nail-biting deploys

Dedicated frontend devs

a lang without runtime errors

Elm gives you..

superb refactoring support
frontend for the entire team

with Redux built-in
and React’s virtual DOM

a currently small ecosystem
a lang without a huge backer
some boilerplate

en delightful dev experience

Is it a good deal?

I think so!

What do you think?

1. Check out my free workshop material 
 github.com/ewendel/elm-workshop 
 (shameless plug)

Did this make you
curious?

2. Join the Elm slack team  
 The elm community is truly amazing 
 elmlang.herokuapp.com

3. Check out your local Elm meetup  
 meetup.com/topics/elm-programming/

Thanks for listening!
@ewndl

twitter.com/osloelmday

slides and workshop available at  
is.gd/forward_elm

http://twitter.com/osloelmday

