DevDays Europe 2021

Nicolas Fränkel

Position: Developer Advocate

Company: Hazelcast

Country: France

Biography

Developer Advocate with 15+ years experience consulting for many different customers, in a wide range of contexts (such as telecoms, banking, insurances, large retail and public sector). Usually working on Java/Java EE and Spring technologies, but with focused interests like Rich Internet Applications, Testing, CI/CD and DevOps. Currently working for Hazelcast. Also double as a teacher in universities and higher education schools, a trainer and triples as a book author.

Talk

Introduction to Data Streaming

While “software is eating the world”, those who are able to best manage the huge mass of data will emerge out on the top.

The batch processing model has been faithfully serving us for decades. However, it might have reached the end of its usefulness for all but some very specific use-cases. As the pace of businesses increases, most of the time, decision makers prefer slightly wrong data sooner, than 100% accurate data later. Stream processing – or data streaming – exactly matches this usage: instead of managing the entire bulk of data, manage pieces of them as soon as they become available.

In this talk, Nicolas will define the context in which the old batch processing model was born, the reasons that are behind the new stream processing one, how they compare, what are their pros and cons, and a list of existing technologies implementing the latter with their most prominent characteristics. He’ll conclude by describing in detail one possible use-case of data streaming that is not possible with batches: display in (near) real-time all trains in Switzerland and their position on a map. Nicolas will go through the all the requirements and the design. Finally, using an OpenData endpoint and the Hazelcast platform, he’ll try to impress attendees with a working demo implementation of it.

Session Keywords

🔑 Stream Processing
🔑 Hazelcast Jet
Workshop

Stream Processing Essentials

Take your first steps to understanding and start working with stream processing! By the end of the course, you will be able to build and run distributed streaming pipelines in Java:

  • Explain when to use streaming
  • Design a streaming application from the building blocks
  • Transform, match, correlate and aggregate continuous data
  • Scale, deploy, and operate streaming apps

We will also cover the advantages and disadvantages of the stream processing technologies available when approaching real-world problems.

« Back