
From zero to hero with 
the Reactive Extensions 
for JavaScript
Maurice de Beijer

@mauricedb



Who am I?

 Maurice de Beijer

 The Problem Solver

 Microsoft Azure MVP

 Freelance developer/instructor

 Twitter: @mauricedb and @React_Tutorial

 Web: http://www.TheProblemSolver.nl

 E-mail: maurice.de.beijer@gmail.com

2



http://bit.ly/2J20hkQ


Topics

 What is RxJS?

 Why use it?

 How to create observables.

 Using operators with observables.



https://rxjs.dev/


http://reactivex.io/


Observer 
pattern

https://en.wikipedia.org/wiki/Observer_pattern


Iterator 
pattern

https://en.wikipedia.org/wiki/Iterator_pattern


Why?

 Reactive programming.
 Programming with asynchronous data streams.

 Most actions are not standalone occurrences.
 Example: A mouse click triggers an Ajax request which triggers a UI 

update.

 RxJS composes these streams in a functional style.



Filtering data



With array 
functions



With RxJS



Fetching data



With promises



With RxJS



Asynchronous data



With 
imperative 
code



With RxJS



The RxJS
Observable

 An Observable is the object that emits a stream of event.
 The observer is the code that subscribes to the event stream.



A simple clock



Unsubscribing



Creating 
observables



RxJS operators

 Operators are used to operate on the event stream between the 
source and the subscriber.

 There are many operators for all sorts of purposes:
 Transforming

 Filtering

 Combining

 Error handling

 Aggregate 

 …



RxMarbles
Interactive diagrams of 
Rx Observables

http://rxmarbles.com/


Events



Ajax



Retry failed 
requests



Retry with 
backing off



Combining 
streams

 Streams can be combined in may ways:
 Switching

 Combine

 Merging

 Zip

 …



Merge 
Example



Conclusion

 Reactive programming is very powerful.

 Compose multiple asynchronous data streams.

 Transform streams using operators as needed.

 Retry failures.

 Cancel subscriptions as needed.



Thank you

Maurice de Beijer - @mauricedb


