
1 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

Give it a REST

Tips for designing and consuming public API’s

2 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

< work

< cycling

Porto >

3 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

Is that really REST?

What is REST?
• Roy Fielding original proposal from 2000

• HATEOAS – Hypermedia API

• Richardson Maturity Model

Roy Fielding
‘Hypermedia as the engine of application state” is a
REST constraint. Not an option. Not an ideal.
Hypermedia is a constraint. As in, you either do it or you
aren’t doing REST.’

Mike Amundsen tweet highlights that REST ≠ CRUD
‘Remember, when designing your WebAPI, your data
model is not your object model is not your resource
model is not your message model.’

https://sebastianbooksblog.wordpress.com/2015/07/05/3390
Roy Fielding, Hoang Xuan Pham and Daniel A. Anderson / University Communications

4 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

Anatomy of a REST request

A REST request is a HTTP* operation on a resource, which may include a message

• HTTP Verb: GET

• Resource: https://api.huddle.net/files/users/123/recentitems

• Headers: Authorization, If-Modified-Since

• Message (optional): body of request, may be JSON, XML or even just plain text

GET https://api.huddle.net/files/users/123/recentitem

Authorization: OAuth2 Imh0dHBzOi8vbG9naW4uaHVkZGxlLm5ldCIsImF1ZCI6IiouaHVkZG

Accept: application/json

User-Agent: HuddleDesktopPC/4.4.0.0

If-Modified-Since: Wed, 25 Apr 2018 08:44:40 GMT

Host: api.huddle.net

* for pedants it doesn’t have to be HTTP

https://api.huddle.net/files/users/123/recentitems

5 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

Anatomy of a REST response

• HTTP Status: 200 OK

• Headers: Content-Type,
Last-Modified

• Message (optional): body of
request, may be JSON,
XML or even just plain text

• Hypermedia API links:
collection of links to
resources with rel attribute
to allow identification of the
appropriate link

Content-Length: 36209

Content-Type: application/json

Last-Modified: Wed, 25 Apr 2018 08:45:53 GMT

{

"maxItems": 50,

"items": [

{

"type": "Document",

"links": [

{

"rel": "delete",

"href": "https://api.huddle.net/files/users/123/recentitems/456"

},

{

"rel": "self",

"href": "https://api.huddle.net/files/documents/456"

},

{

"rel": "alternate",

"href": "https://my.huddle.net/workspaces/789/files/456"

}

],

"title": "Notes – Huddle API Design",

"contentType" : "application/vnd.openxmlformats-

officedocument.wordprocessingml.document",

"extension" : "docx",

: : : :

6 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

But what about gRPC?

• gRPC

• Remote Procedure Call system
created by Google

• Always connected, HTTP/2

• Binary protocol (protobuff),

• Procedure based rather than
resource based

A bit like Java RMI, or CORBA or
DCOM or SOAP

We’ve been here before, however
much we tried to forget …

7 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

API design – where do you start?

• Human and automated users

• Readable by a human

• SOAP and XML were not inherently readable

• While you have a model on the server it may not fit all
your clients

• Should you design for the server or for the client?

• Design for the business

• Balance of Security, Reliability and Speed

At Huddle we have an API design Slack channel

Remember – there is NO right answer for everyone!

Prohibited icon made by https://www.flaticon.com/authors/roundicons
Green letters by http://gimpchat.com/viewtopic.php?f=11&t=5232

8 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

An API is a contract

An API is a contract between the publisher and the consumer, which creates a set of
mutual obligations

• For the person publishing the API

• Document the API – responses, headers, acceptable media types, sample code

• Make it clear what is optional, and what might be extended

• Consider how different clients might use the API and what local caching might exist

• For the person consuming the API

• Read the documentation and expect to handle all the possible responses

• Use only what you need from the response to minimise your coupling

Documentation is key whatever form it is in; wiki, Swagger, Apiary.io. Include as
much information as possible, including expected HTTP responses, media types,
headers as well as URI and resource formats

9 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

Versioning an API

On the Nordic API web site, there is a blog which references Zdenek Nemec talking
about API Change Management,

What versions exist?
• Client version

• Message Format version

• API implementation (server) version,

• API documentation version

• Resources, relationships between resources and the API itself does not have a version

In an ideal world versioning is not simply adding v2, v3 to the URI. At best use
extension strategies, and if you have radically new formats they better modelled as
new resources with new URIs

10 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

Extending an API

What are the extension rules?

• You must not take anything away

• You must not change processing rules

• You must not make optional things required

• Anything you add must be optional (you may use default values, either within the form in
the case of hypermedia, or on the API implementation on the server)

Monitor feature usage

• see who keeps using deprecated fields/methods

Formalise how you communicate API changes and timescales

11 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

How do we introduce breaking changes?

Zdenek Nemec has an answer for this question as well, again for brevity; if a change
to either of the following violate the extension rules listed earlier, you simply need to
create a new resource:

• Resource Identifier (the URI) including any query parameters and their semantics

• Resource metadata (such as the HTTP headers)

• Resource data (such as the HTTP body) fields and their semantics

• Actions the resource affords (e.g., available HTTP Methods)

• Relations with other resources (e.g., Links)

If an existing client does not produce the same results with the same resources as
previously you have broken the API. A client can not be expected to intelligently
handle new data items, or use different or additional HTTP methods to perform the
same operations

12 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

Patterns and strategies

13 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

Deprecation

14 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

Elegant deprecation

15 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

BFF – for compatibility and tailoring

BFF – Backend For Frontend (Thoughtworks Tech Radar 2016)

Compatibility

• If you are re-engineering your data within the backend, you may generate a new API
with different semantics

• You can create a BFF to replicate the old API semantics, making use of the new API

Tailoring results to specific clients

• Some clients may want data in a different form to the original API

• Mobile clients have network performance issues so it can be useful aggregate calls

• A BFF may be only used by internal clients, making changes to the BFF much easier

16 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

Using links to construct a user interface

With a Hypermedia API when you deliver a resource, you include various links within
the response to provide information to the consumer of what operations are available

The presence and absence of links in the response can provide the consumer with a
means of constructing a valid user interface for a resource, and can work well with
user permissions

You can supply edit, update, delete, download rel links

Based on presence, or absence of links the UI can include the appropriate buttons
and links

Links reflect the permission you might have on a document; i.e. the difference
between a viewer and an editor of content

17 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

Hypermedia UI (consumer/publisher)

We use this model in Huddle, but there are limitations if those links are affected by not
just permissions, but the state of a resource

When a document is locked for editing we do not provide an edit link, so there is no
Edit button (acting as if a user had a read only permission)

When we added web push notifications (via WebSockets) our Single Page Application
receives a notification saying the document is not unlocked …
… but there is no Edit button to enable, as it was never created in the HTML DOM, as
it did not receive a link to support editing the document, as when it first loaded the
document resource it was locked

18 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

Caching – 304 Not Modified

Last-Modified, If-Modified-Since headers

• Last-Modified header included when a resource is provided

• The consumer than uses that value in an If-Modified-Since header when
requesting a resource

• The API returns 304 Not Modified if nothing has changed and the consumer knows
that the resource it already has is up to date

ETag (Entity Tag)

• Strong and weak Etags

• "123456789“ – a strong ETag validator, based on a hash of the resource

• W/"123456789" – a weak ETag validator, often hashed on a version of the resource

• Response header – ETag: "686897696a7c876b7e"

• Request header – If-None-Match: "686897696a7c876b7e"

19 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

Last-Modified header (producer)

Real world example – BFF to ‘replicate’ existing API
• Original API included a Last-Modified header

• The BFF did not include this header (an oversight, not be design)

• Clients (iOS in this case) were now making multiple requests rather than a single
request when data is unchanged

Mitigation
• The header was part of the original API contract

• Replicate that behaviour in the new BFF, achieved by passing the header from the new
API straight through to the BFF

We could have also modified the client app to use the new API, or handle the new
BFF response better … but updating every iOS app might take SIX months

20 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

Rate limiting – 429 Too Many Requests

API’s can utilise rate limiting, especially for particularly chatty clients
• Provide a Retry-After header to indicate to consumers how long to wait before

retrying an operation

• Can rate limited based on specific clients

• Can be used with leaky bucket strategy to monitor API usage

Consumers
• There is a responsibility on consumers to honour 429 responses

• Consumers should honour the back off time

• If consumers treat rate limiting as just a standard error and immediately retry an
operation, the benefit can be lost

Even if consumers ignore the 429 response it can still protect servers, as the
response is much more efficient to produce.

21 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

Async and REST

Progress endpoint pattern

• POST operation

• Returns 202 Accepted and a link for progress / exception reporting

• Client polls the link for completion of operation

• On completion the response either returns the final response or provides a link to the
resource for the completed operation

Once had a developer ask for how to make an API call asynchronous (using async in
C#), in that it could return control immediately after issuing a request, but if anything
went wrong they would like it to somehow provide a HttpStatusCode straight away

The progress endpoint pattern provides a better model – no need to make the request
async in the client, if initial validation and/or authentication are successful the server
returns 202 Accepted with a progress endpoint for obtaining the final result

22 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

Mini PUT/POST …../status example
Often you want to update a subset of information in a resource, often only a single
property of a resource, such as status.

• PATCH operation could be used but requires a specially format patch data format
such as JSON-patch, and PATCH is not guaranteed to be idempotent

• Can use PUT (or POST) on a ‘child’ resource
• PUT https://api.huddle.net/files/document/123 updates whole

resource

• PUT https://api.huddle.net/files/document/123/readonly updates
just the read only status of the document

• Can return a full representation of the resource after the PUT is successful
• If you do provide a Content-Location header to indicate that the response is at a

different location to the resource on which the PUT was made

23 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

Real world examples

24 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

Updating FileRequest status

Huddle has a concept of a task that is a request for a file, which includes a status
property. The front end team realised that the standard REST model was really heavy
and asked the back end for a solution to updating the status … a mini PUT.
• If you update the status in the web UI these calls have to be made

• GET https://api.huddle.net/tasks/123 to get latest task resource

• PUT https://api.huddle.net/tasks/123 to save with updated status

• GET https://api.huddle.net/tasks/123 to get latest task resource

• Currently under development this will change to
• PUT https://api.huddle.net/tasks/123/status to save the new status and

return the latest state of the resource

This reduces server calls, and clearly indicates the business process being invoked.

25 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

Over consuming (consumer)

Just because a response includes data does not mean it all has to be deserialized
into a local version of a resource

Responses are messages, there is no requirement to process all the data returned,
especially on GET calls

Real world example – Huddle Desktop

When a QA tested putting an invalid URI into the personal website of their user profile
they not only proved it is not validated on our server, but Huddle Desktop also had
problems; despite being a string in the JSON response, Huddle Desktop deserialized
the personal website to a System.URI which failed

At no point was the personal web site used by Huddle Desktop, the inclusion in the
deserialization was for ‘completeness’ and possible ‘future use’

26 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

Enumerated values (consumer)

Real world example – Android ToDo list processing, when a new type was added,
FileRequest, the code threw an exception and the list failed to load

Mitigation
• List could only show tasks that it knows how to display

• The app could provide information to user that there are items it cannot display

switch (type) {

case "task":

taskType = ActionType.TASK;

break;

case "approval":

taskType = ActionType.APPROVAL;

break;

default:

throw new JSONException(“Unknown item type in todo list.");

}

27 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

Real world example – BFF to ‘replicate’ existing API
Android app was grabbing first link to perform a PUT on updating last-seen item

Mitigation

• Had to order the links in the response in exact order of original API event though that is
not relevant in a Hypermedia API, clients should use the rel attribute not ordering

{

"unseenCount": 0,

"links": [{

"rel": "self",

"href": "https://api.huddle.net/notifications/user/20906501/received/last-seen"

}, {

"rel": "alternate",

"href": "https://api.huddle.net/notifications/user/20906501/received",

"title": "Received Notifications"

}],

"lastNotificationSeen": {

"id": "urn:uuid:1eb8b39a-72d3-4666-9451-3cfcd337cf79",

"createdDate": "Tue, 24 Apr 2018 14:38:36 GMT"

}

}

Relying on link order (consumer)

28 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

Resources

• https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
• Roy Fielding’s original doctorate dissertation from 2000

• https://nordicapis.com/blog/
• Great active discussion of everything related to APIs

• http://slack.httpapis.com
• Slack channel, created by Sebastien Lambla (serialseb) where you can

• http://www.bizcoder.com/http-pattern-index
• HTTP REST patterns, such as progress endpoint pattern

• http://restcookbook.com/
• Full of guidance on how to create RESTful API and basic fundamentals of REST

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://nordicapis.com/blog/
http://slack.httpapis.com/
http://www.bizcoder.com/http-pattern-index
http://restcookbook.com/

29 THIS DOCUMENT AND THE INFORMATION IN IT ARE PROVIDED IN CONFIDENCE, AND MAY NOT BE DISCLOSED TO ANY THIRD PARTY OR USED FOR ANY OTHER PURPOSE WITHOUT THE EXPRESS WRITTEN PERMISSION OF HUDDLE. © Huddle

https://blog.liamwestley.co.uk

@westleyl

London

2 Leman Street

2nd Floor, Aldgate Tower

London, E1 8FA

Washington DC

7910 Woodmont Avenue #1250

Bethesda

MD, 20814

San Francisco

156 2nd Street

San Francisco

CA, 94105

Ninian Solutions Ltd (trading as Huddle) is registered in England & Wales at 2 Leman Street, 2nd Floor Aldgate Tower, London, UK (company number 05777111) and its U.S. subsidiary Huddle Inc, a Deleware Corporation, at 156 2nd Street, San Francisco, CA, U.S.

Huddle is hiring - https://www.huddle.com/about/careers-huddle/

